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Classical novae as
super-Eddington steady states

N. J. Shaviv and C. Dotan

Racah Institute of Physics, Hebrew University of Jerusalem Jerusalem, 91904 Israel

Abstract. The high luminosities and long decays of classical novae imply that they should
be described as evolving super-Eddington (SED) steady states. We begin by describing
how such states can exist—through the rise of a “porous layer” which reduces the effective
opacity, and then discuss other characteristics of these states, in particular, that a continuum
driven wind will arise. We then modify the stellar structure equations to describe these
characteristics. The result is a modification of the classical core-mass—Iluminosity relation
to include the super-Eddington state. The evolution of this state through mass loss describes

classical nova light curves.
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1. Introduction

One of the salient characteristics of classical
novae is that the peak luminosity of most if not
all eruptions is super-Eddington (SED). This
can be seen in the peak luminosity of novae in
M31 (see fig.[d).

Having SED luminosities is not contradic-
tory to any classical notion, since SED lumi-
nosities can appear in dynamical systems (such
as supernovae) which are far from a steady
state. However, one would expect in such cases
to develop bulk motions comparable to the lo-
cal escape speed (since the effective gravity, in-
cluding radiation, is similar to the actual grav-
ity but reverse in direction). This implies that
we can have a SED system but over a duration
no longer than a time scale comparable to the
typical size divided by the escape velocity. For
the typical sizes of novae envelopes (~ 102
cm) and typical wind velocities (~ 1000 km/s),
one finds that novae could classically be SED
for at most a few hours. And indeed, numeri-

cal simulations of novae can produce SED lu-
minosities for a few hours but not longer (e.g.
Prialnik & Kovetz|1992).

Nevertheless, a quick inspection of fig. [I]
clearly reveals that the decay time is typically
10 days or longer. In fact, if one considers the
bolometric luminosity, then the problem is ag-
gravated since the decay rate of the total lumi-
nosity is typically a few times slower than the
rate observed in the visible (Friedjung|/1987;
Schwarz et al.l2001 [Shavivi 2001b)). Clearly
then, classical novae should be described as
super-Eddington steady states.

This stands in stark contrast to the the-
oretical expectation. When the accreted ma-
terial on a WD undergoes a thermonuclear
runaway, it first passes a dynamic state dur-
ing which the atmosphere is puffed up. In
this stage, the luminosity can be easily SED.
Because of that, a strong continuum driven
wind should exist. However, once the system
expands and stabilizes dynamically, it should
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Fig. 1. The visible magnitude—decay rate relation of
novae in M31, from |della Valle & Liviol(1995) The
lines denote the Eddington luminosity limit for vari-
ous cases. The upper line is the highest Lgqq theoret-
ically possible for a Nova. The middle line is a more
reasonable upper limit for typical fast novae.

follow the classical core-mass luminosity re-
lation (Paczynski|[1970). Since the CMLR is
sub-Eddington, the only way to get a signifi-
cant, optically thick mass loss is to drive a con-
tinuum driven wind on opacity maxima (e.g.,
Kato| [1997). However, even in this case, the
maximal mass loss possible is more than an or-
der of magnitude smaller than many observed
mass loss rates (Bath & Shaviv]|[1976} Shaviv
2001b).

The lower mass loss rate in the standard
sub-Eddington picture has another interesting
implication. It implies that the evolution is in
many cases driven by the nuclear burning (i.e.,
changing of the envelope composition and not
its mass (e.g., see Hernanz in this volume).

2. The classical CMLR

Before we start modifying the standard CMLR,
to see how it can describe super-Eddington
states, we begin by revisiting the standard
CMLR. This relation should describe any ob-
ject with an inert degenerate core, and an en-
velope with a much smaller mass, and nuclear
fusion at its base. Nova eruptions and post-
AGB stars are the two classical examples of
such objects. Empirically, one finds that such
objects have an envelope mass independent lu-
minosity for a wide range of envelope masses.
Within this range, the outer radius of the ob-
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Fig.2. The luminosity, photospheric temperature
and photospheric radius as a function of M., for
the standard CMLR of a 1.2 M,, object. For a finite
range of envelope masses, the luminosity is almost
constant. At larger envelope masses, the escape ve-
locity is smaller than the speed of sound and the en-
velope evaporates. As lower envelope masses, the
envelope “width” is smaller than the core radius,
and the luminosity is smaller. The super-Eddington
core mass (and envelope mass) luminosity relation
is similar except that the “effective” luminosity is
constant.

ject is much larger than the core radius. Below
this M., range, the CMLR breaks because
the luminosity starts decreasing with the en-
velope mass, which extends to heights much
smaller than the core radius. Above this range,
the outer extent of the envelope is so large, that
the escape velocity is comparable to the speed
of sound, and the envelope evaporates. This is
summarized in fig. 2!

To understand what sets the luminosity and
why it is not a function of the envelope mass,
we should note that:

— To get an envelope which extends to large
radii (much larger than the core radius), the
sound speed at the base of the envelope
has to be fixed, irrespective of the envelope
mass. This gives a unique specific radiation
entropy (s,) luminosity relation through the
dependence of the energy generation on the
temperature.

— To get a consistent atmosphere which sat-
isfies both the hydrostatic and radiative
transfer equations, there is another relation
between s, and L/Lgqq, but one which is al-
ways sub-Eddington. Moreover, for a fixed
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opacity, s, is the same everywhere in the
envelope.

The s, — L relations have a unique intersection,
which gives a specific L that only depends on
the core mass. This is the origin of the CMLR.

3. How can SED states exist?

Before attempting to modify the CMLR, let us
try to understand how SED states can exist.
First, we should note that the opacity relevant
to radiative transfer in inhomogeneous media
is not the microscopic opacity. Instead, it is

_A{FKy)
Keff = (F) s

)]

where the average is a volume average and «,
is the opacity per unit volume (the extinction).
Thus, any introduction of nonlinear structure
will cause a change in the opacity. For a con-
stant opacity (e.g., electron scattering) this al-
ways causes a reduction (Shavivl[1998]).

The next point to consider is that as at-
mospheres approach Lgqq they become unsta-
ble, so that they naturally reduce their opac-
ity. Such instabilities arise in Thomson scatter-
ing atmospheres (Shavivi2001a)) because of the
vertical stratification. They can also arise on a
larger range of length scales under more com-
plex conditions, whether a non-constant opac-
ity (Glatzel[1994), or a magnetic field (Arons
1992).

The above implies that if we wish to de-
scribe the global structure of luminous atmo-
spheres, we should replace the microscopic
opacity by an effective one. Since we do not
now yet how the instabilities will saturate, we
cannot know a priori the form for the opac-
ity. In the following analysis, we will con-
sider the simplest form which encapsulates the
above physics: k(') = x9/(1 +T') where I' =
L/Lgqq. This gives no change in the effective
opacity at small Eddington parameters I" and a
large enough reduction at high I'’s which keeps
the system effectively sub-Eddington, that is,
Tepp = (ket/k0)T < 1.
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4. The modified CMLR

The next step is to consider the classical
CMLR and modify it following the conclu-
sions from the previous section. The first point
to note is that the s, — L relation now ex-
pected form the radiative transfer and hydro-
static equilibrium will give the same I'.g (cal-
culated with the effective opacity), however,
because kg is now reduced, the corresponding
total luminosity is going to be higher, and it can
be super-Eddington. This can be seen in fig.[3
where L.y = (kefr/k)L behaves the same as the
luminosity in the classical CMLR (cf fig. D),
but the actual luminosity at the top of the at-
mosphere, Ly, is much higher.

Although the internal structure (core + en-
velope) is very similar in the SED state, the
appearance of SED states is going to be mark-
ably different from the sub-Eddington counter-
parts. The reason is that SED states necessar-
ily accelerate a thick continuum driven wind
(Shavivi2001b). As a consequence, the photo-
sphere and general appearance of the wind de-
pends on the actual mass loss.

To derive the mass loss, we have to con-
sider that the aforementioned opacity reduc-
tion can only take place as long as the non-
linear structure formed by the instabilities is
optically thick. Once they become optically
thin, the radiation cannot be funneled around
the optical “obstacles”. As a consequence, the
anti-correlation between the flux and density
needed for the reduction of the opacity disap-
pears (see eq.[I).

Since the instabilities are expected to oper-
ate on a length scale comparable to the atmo-
spheric vertical scale height, the effective opac-
ity will approach the microscopic one where
the optical width of a scale height becomes of
order unity. From this, one can derive the ex-
pected mass loss (Shavivi2001b):

L— Lgy
cvg

liywing = W 2
where v; is the sound speed at the sonic point.
W is a constant (or weak function of I') which
is expected to be of order unity. The mass loss
derived from this mass-loss luminosity relation
is consistent with 7-Carinae and the winds of
novae (Shavivi2001b)).
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Fig. 3. Different characteristics of a shell burning
object with a WD core of mass 0.8 M, as a function
of the envelope mass, assuming X = 0.3 and Z =
0.05.

The resulting SED CMLR, which consid-
ers the modified opacity and the continuum
driven wind is summarized, for two cases in
figs. Bland ]

The steady states are obtained by solving
the full stellar structure equations (though only
with a Thomson scattering opacity). This is
achieved by carrying out two iterations.

First, a radius for the sonic point is fixed
while initial guesses for the luminosity and
temperature at rgonc are guessed. From the
mass loss luminosity relation, one can derive
the density and integrate outwards to infinity.
The temperature at ropic iS then iterated for un-
til the photospheric black body conditions are
met. This consistent wind solution is then inte-
grated down to the WD radius. To obtain a con-
sistent solution, the luminosity at rgnic should
be iterated for until L(rwp) = 0.

Note that we have two nested iterations (in-
stead of iterating for 7 and L, or other two vari-
ables, simultaneously). It was found that the
convergence of this algorithm is relatively fast
and very stable.

Figs. i] and @ reveal several interesting
characteristics of the SED states. First, as men-
tioned above, there are several relevant lumi-
nosities, not just one. The effective luminos-
ity Leg remains similar to the luminosity of the
standard CMLR. However, the real luminosity
Lpase can be much higher. Moreover, because
the wind is heavy, a large fraction of this lu-
minosity can be used to accelerate the wind,
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Fig. 4. The same as fig. 3[but for a 1.2 M, WD.

which is why the observed L, can be signifi-
cantly smaller than Lyge.

Another interesting aspect can be seen in
the M = 1.2 My case. For some envelope
masses, the states become “photon tired”. This
condition arises because the energy required to
carry the predicted mass loss out of the gravi-
tational potential well is larger than the energy
available at the base, and as a consequence,
the wind stagnates (Qwocki-&Gayley14997)-
The behavior of such systers was studied by
yan—-Marle—et-al—2009); It was found that a
new layer with a hierarchical set of shocks
is formed. The layer effectively remains hy-
drostatic and it forms a new effective sonic
point higher up in the potential well, were
the mass loss would not be photon tired any-
more. The layer does so because the supersonic
material moving upwards advects the required
energy, without the corresponding mass loss
since there is a corresponding flow downwards.

5. Light curves from state evolution

Although the initial TNR of novae should be
described dynamically, once the novae sta-
bilize, they are described by steady states.
However, these steady states do evolve in time.
This evolution can translate into the nova light
curve.

The evolution between different states can
arise from the wind or the nuclear burning.
The wind implies that as time progresses, the
envelope mass simply decreases according to
wind- Nuclear burning can cause two effects.
The burning is responsible for a change in the
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Fig. 5. A light curve obtained by relating states with
different envelope masses (see fig. B] through the
continuum driven mass loss. The WD is assumed to
have an 10~*M,, envelope at 7 = 0.

composition. If the envelope is not convective,
then the ashes will settle down on the WD and
the envelope mass will decrease. If however the
envelope is convective, the ashes will mix, and
the net effect will be a reduction in the enve-
lope’s hydrogen fraction X.

We can define two time scales, one is due
to the wind mass 10sS, Twind = Meny/Mwind,
and a time scale to lose or change the mass
through nuclear burning, Thye = XMeny/Hinuc.
Taking the above SED mass loss luminosity
relation, and the nuclear energy production of
L = erigy.c?, we find

Te  WXT - Dec
- v [ ’

3)
Twind
This ratio is always much larger than unity by
several orders of magnitude, implying that the
state evolution is almost entirely due to the
wind driven mass loss, at least, as long as a
SED wind exists.

Armed with this knowledge, we can now
relate the SED CMLR into a light curve
through the wind mass loss.

Fig. 5ydepicts the resulting light curve ob-
tained for an M = 0.8 M nova having an ini-
tial envelope mass of 10™* M. These condi-
tions give rise to a slow nova with a t, of about
160 days. Fig. E]is similar, except that it de-
picts the light cturve for an M = 1.2 M nova
having an initial mass of 5 x 107> M. Here the
nova is very fast, with 7, of 12 days. It is also
interesting that it exhibits a second peak. This
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Fig. 6. The light curve obtained for the WD in fig. 4,[]
assuming an initial envelope mass of 5 x 107> M,

is similar to the observed light curve of Nova
V2491 Cyg.

6. Summary and discussion

We have seen that classical nova eruptions
are SED and their decay is much longer than
the dynamical time scale. Consequently, they
should be described as super-Eddington steady
states. Presently, the only known way how to
explain the existence of these super-Eddington
states is by having the effective opacity de-
crease as the Eddington luminosity is ap-
proached. Although at first it may seem as an
ad hoc assumption, it is a natural consequence
of the instabilities expected to take place when
the radiation pressure becomes dominant.

The super-Eddington states which are then
obtained resemble the classical CMLR. The
main exception is that the SED states have a
very large mass loss. These has many interest-
ing implications. For example, the luminosity
Lg, observed at infinity is smaller than the lu-
minosity at the base. As a consequence, Lgo
is a function of the envelope mass (unlike the
classical relation).

The high mass loss rate also implies that
the time dependence is a consequence of the
decreasing envelope mass and not due to nu-
clear burning.

7. Discussion

ODED REGEY: Is it possible that the explo-
sion gives rise to non-spherically symmetric
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dynamics and then long term expansion, such
that the Eddignton luminosity is not a prob-
lem?

NIR SHAVIV: The initial dynamic part of the
explosion could indeed be asymmetric, which
could facilitate having super-Eddington lumi-
nosities. The problem arises when considering
time scales much longer than any relevant dy-
namic time scale, such that we expect grav-
ity to equilibrate the envelope into a spheri-
cal hydrostatic solution. There is no way, that I
know of, which could explain how such hydro-
statically equilibrated states give rise to super-
Eddington luminosities, other than by having a
reduced opacity.

JEAN-PIERRE LASOTA: What determines
the size of the blobs?

NIR SHAVIV: The size of the blobs is deter-
mined by the most unstable modes. This of
course depends on the instability which op-
erates, but the most general one which oper-
ates also in Thomson scattering atmospheres,
requires the atmospheric stratification for the
modes to grow. As a consequence, the least sta-
ble modes are of order the scale height of the
atmosphere.

PIETER MEINTJE: Can one relate the dis-
persion relation of the instabilities to the ob-
servational behavior during outbursts?

NIR SHAVIV: The typical nonlinear structure
has a typical length scale comparable to the at-
mospheric scale height below the sonic point.
Since it is much smaller than the radius and be-
cause the wind acceleration might destroy it, I
am doubtful that one can observe this structure
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directly. However, indirectly, the structure de-
termines the mass loss rate—the wind constant
‘W depends on the least stable mode, and it is
expected to be of order unity for structure of
order the scale height. Smaller unstable modes
would give rise to a larger ‘W.
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